(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

rev1(0, nil) → 0
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

rev1(0', nil) → 0'
rev1(s(X), nil) → s(X)
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
s/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
rev1, rev, rev2

They will be analysed ascendingly in the following order:
rev1 < rev
rev = rev2

(8) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))

The following defined symbols remain to be analysed:
rev1, rev, rev2

They will be analysed ascendingly in the following order:
rev1 < rev
rev = rev2

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)

Induction Base:
rev1(0', gen_nil:cons3_0(0)) →RΩ(1)
0'

Induction Step:
rev1(0', gen_nil:cons3_0(+(n5_0, 1))) →RΩ(1)
rev1(0', gen_nil:cons3_0(n5_0)) →IH
0'

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

Lemmas:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)

Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))

The following defined symbols remain to be analysed:
rev2, rev

They will be analysed ascendingly in the following order:
rev = rev2

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
rev2(0', gen_nil:cons3_0(+(1, n215_0))) → *4_0, rt ∈ Ω(n2150)

Induction Base:
rev2(0', gen_nil:cons3_0(+(1, 0)))

Induction Step:
rev2(0', gen_nil:cons3_0(+(1, +(n215_0, 1)))) →RΩ(1)
rev(cons(0', rev(rev2(0', gen_nil:cons3_0(+(1, n215_0)))))) →IH
rev(cons(0', rev(*4_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

Lemmas:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)
rev2(0', gen_nil:cons3_0(+(1, n215_0))) → *4_0, rt ∈ Ω(n2150)

Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))

The following defined symbols remain to be analysed:
rev

They will be analysed ascendingly in the following order:
rev = rev2

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol rev.

(16) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

Lemmas:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)
rev2(0', gen_nil:cons3_0(+(1, n215_0))) → *4_0, rt ∈ Ω(n2150)

Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)

(19) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

Lemmas:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)
rev2(0', gen_nil:cons3_0(+(1, n215_0))) → *4_0, rt ∈ Ω(n2150)

Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)

(21) BOUNDS(n^1, INF)

(22) Obligation:

Innermost TRS:
Rules:
rev1(0', nil) → 0'
rev1(s, nil) → s
rev1(X, cons(Y, L)) → rev1(Y, L)
rev(nil) → nil
rev(cons(X, L)) → cons(rev1(X, L), rev2(X, L))
rev2(X, nil) → nil
rev2(X, cons(Y, L)) → rev(cons(X, rev(rev2(Y, L))))

Types:
rev1 :: 0':s → nil:cons → 0':s
0' :: 0':s
nil :: nil:cons
s :: 0':s
cons :: 0':s → nil:cons → nil:cons
rev :: nil:cons → nil:cons
rev2 :: 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_nil:cons3_0 :: Nat → nil:cons

Lemmas:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)

Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(0', gen_nil:cons3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
rev1(0', gen_nil:cons3_0(n5_0)) → 0', rt ∈ Ω(1 + n50)

(24) BOUNDS(n^1, INF)